Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Current Trends in Biotechnology and Pharmacy ; 17(2):907-916, 2023.
Article in English | EMBASE | ID: covidwho-20241386

ABSTRACT

The traditional de novo drug discovery is time consuming, costly and in some instances the drugs will fail to treat the disease which result in a huge loss to the organization. Drug repurposing is an alternative drug discovery process to overcome the limitations of the De novo drug discovery process. Ithelps for the identification of drugs to the rare diseases as well as in the pandemic situationwithin short span of time in a cost-effective way. The underlying principle of drug repurposing is that most of the drugs identified on a primary purpose have shown to treat other diseases also. One such example is Tocilizumab is primarily used for rheumatoid arthritis and it is repurposed to treat cancer and COVID-19. At present, nearly30% of the FDA approved drugs to treat various diseases are repurposed drugs. The drug repurposing is either drug-centric or disease centric and can be studied by using both experimental and in silico studies. The in silico repurpose drug discovery process is more efficient as it screens thousands of compounds from the diverse libraries within few days by various computational methods like Virtual screening, Docking, MD simulations,Machine Learning, Artificial Intelligence, Genome Wide Association Studies (GWAS), etc. with certain limitations.These limitationscan be addressed by effective integration of advanced technologies to identify a novel multi-purpose drug.Copyright © 2023, Association of Biotechnology and Pharmacy. All rights reserved.

2.
Int J Mol Sci ; 24(10)2023 May 18.
Article in English | MEDLINE | ID: covidwho-20235991

ABSTRACT

A new series of 4-((7-methoxyquinolin-4-yl) amino)-N-(substituted) benzenesulfonamide 3(a-s) was synthesized via the reaction of 4-chloro-7-methoxyquinoline 1 with various sulfa drugs. The structural elucidation was verified based on spectroscopic data analysis. All the target compounds were screened for their antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria, and unicellular fungi. The results revealed that compound 3l has the highest effect on most tested bacterial and unicellular fungal strains. The highest effect of compound 3l was observed against E. coli and C. albicans with MIC = 7.812 and 31.125 µg/mL, respectively. Compounds 3c and 3d showed broad-spectrum antimicrobial activity, but the activity was lower than that of 3l. The antibiofilm activity of compound 3l was measured against different pathogenic microbes isolated from the urinary tract. Compound 3l could achieve biofilm extension at its adhesion strength. After adding 10.0 µg/mL of compound 3l, the highest percentage was 94.60% for E. coli, 91.74% for P. aeruginosa, and 98.03% for C. neoformans. Moreover, in the protein leakage assay, the quantity of cellular protein discharged from E. coli was 180.25 µg/mL after treatment with 1.0 mg/mL of compound 3l, which explains the creation of holes in the cell membrane of E. coli and proves compound 3l's antibacterial and antibiofilm properties. Additionally, in silico ADME prediction analyses of compounds 3c, 3d, and 3l revealed promising results, indicating the presence of drug-like properties.


Subject(s)
Anti-Infective Agents , Urinary Tract Infections , Escherichia coli , Structure-Activity Relationship , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Sulfanilamide/pharmacology , Sulfonamides/pharmacology , Fungi , Biofilms
3.
Journal of Coordination Chemistry ; : 1-32, 2023.
Article in English | Web of Science | ID: covidwho-2324910

ABSTRACT

A series of Zn(II) complexes with oxazolidinone derivatives has been synthesized and characterized using spectroscopic techniques: IR, H-1 NMR, UV-Vis spectroscopy, and TGA/DTG thermal investigation. Theoretical computations were carried out using B3LYP/6-31G(d) and B3LYP/LanL2DZ to analyze the vibrational properties, NBO charges, global chemical reactivity indices and to illustrate the FOMs. TD-DFT calculations using WB97XD functional were realized with 6-31 G(d) and LAN2DZ basis set on oxazolidinone ligands and their zinc complexes. The pharmacokinetic properties and toxicity of the investigated compounds were predicted using in silico ADMET studies. Moreover, the S. aureus, E. coli, S. pneumoniae, ribosome 50S subunit, SARS-Cov-2 spike protein and ACE2 human receptor were selected for molecular docking study. The docking study shows that HL4 and ZnL4 bind better to the spike protein and hACE2 receptor. The redox properties were also studied for ligands and their corresponding complexes using cyclic voltammetry. Finally, antioxidant activity studies using DPPH radical scavenging showed efficiency for HL2 and [Zn(L-2)(2)] with low values of IC50 compared to ascorbic acid. The antimicrobial activity against B. subtilis (ATCC 9372), E. faecalis (ATCC 29212), S. aureus (ATCC 6538), E. coli (ATCC 4157), bacteria strains, C. albicans (ATCC 24433) and A. niger fungi strains were evaluated.

4.
International Journal of Pharmaceutical Sciences and Research ; 14(5):2227-2235, 2023.
Article in English | EMBASE | ID: covidwho-2325091

ABSTRACT

In recent days, the increasing number of microbes and their increasing resistance power against conventional drugs have led to enormous worldwide mortalities, hence they pose a great threat to human health. The modern era is already going through the threat of COVID-19, also caused by one of those microbes called the virus. In order to get a clear understanding, all the microbes have been classified in certain types. Nowadays, to develop new alternative antimicrobial medicines, scientists must acquire clarity about the responsible functional groups of different conventional drugs with proper mechanistic elucidation on different types of microbes. This information not only clarifies the functionalities and properties responsible for exhibiting antimicrobial effects, but also facilitates the idea of new drug development through proper functional group incorporation or modification. These modifications increase the efficacy of antimicrobial drugs as well as their activity and water solubility. In this review, my focus will majorly be on the four main types of microbes and their possible mechanistic elucidation of commonly used antibiotics and alternative antimicrobial medicines discovered till now. I thank the Science and Engineering Research Board (SERB), Council of Scientific and Industrial Research (CSIR), and Government of India for my fellowship and research grants during my Ph.D in Indian Institute of Science Education and Research, Kolkata and Postdoctoral journey in the University of Burdwan. I acknowledge Prof. Bimalendu Ray (Chemistry department, The University of Burdwan), Prof. Priyadarsi De, (Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata), Prof. Punyasloke Bhadury (Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata), Dr. Anwesha Ghosh (Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata) for many helpful discussions and laboratory use.Copyright © 2023 are reserved by International Journal of Pharmaceutical Sciences and Research.

5.
Pharm Chem J ; 57(2): 196-203, 2023.
Article in English | MEDLINE | ID: covidwho-2317547

ABSTRACT

1H-indol-2,3-dione (isatin) class of biologically active compounds have analgesic, anti-microbial, anti-inflammatory, anti-tubercular, anti-proliferative properties, and is also useful for the treatment of SARS-CoV. Schiff bases containing isatin moiety are known to have broad spectrum of biological activities like anti-viral, anti-tubercular, anti-fungal, and anti-bacterial. In this work, several Schiff base derivatives have been synthesized using two methods (synthetic and microwave) by reacting isatin with o-phenylenediamine. The synthesized compounds were structurally characterized and their in-vivo antimicrobial activity was tested against Gram-negative and Gram-positive bacteria using the inhibition zone method. Several newly synthesized isatin derivatives were found effective as antimicrobial agents and showed good potency (compounds 3c, 3d, 6a, 6b, 6d). Compound 3c displayed higher antimicrobial activity than standard drug (Amoxicillin) against Staphylococcus aureus at higher concentration (16 µg/mL) and against Escherichia coli at lower concentration (1 µg/mL).

6.
Applied Sciences-Basel ; 12(2), 2022.
Article in English | Web of Science | ID: covidwho-2307540

ABSTRACT

In October 2020, the SARS-CoV-2 B.1.617 lineage was discovered in India. It has since become a prominent variant in several Indian regions and 156 countries, including the United States of America. The lineage B.1.617.2 is termed the delta variant, harboring diverse spike mutations in the N-terminal domain (NTD) and the receptor-binding domain (RBD), which may heighten its immune evasion potentiality and cause it to be more transmissible than other variants. As a result, it has sparked substantial scientific investigation into the development of effective vaccinations and anti-viral drugs. Several efforts have been made to examine ancient medicinal herbs known for their health benefits and immune-boosting action against SARS-CoV-2, including repurposing existing FDA-approved anti-viral drugs. No efficient anti-viral drugs are available against the SARS-CoV-2 Indian delta variant B.1.617.2. In this study, efforts were made to shed light on the potential of 603 phytocompounds from 22 plant species to inhibit the Indian delta variant B.1.617.2. We also compared these compounds with the standard drug ceftriaxone, which was already suggested as a beneficial drug in COVID-19 treatment;these compounds were compared with other FDA-approved drugs: remdesivir, chloroquine, hydroxy-chloroquine, lopinavir, and ritonavir. From the analysis, the identified phytocompounds acteoside (-7.3 kcal/mol) and verbascoside (-7.1 kcal/mol), from the plants Clerodendrum serratum and Houttuynia cordata, evidenced a strong inhibitory effect against the mutated NTD (MT-NTD). In addition, the phytocompounds kanzonol V (-6.8 kcal/mol), progeldanamycin (-6.4 kcal/mol), and rhodoxanthin (-7.5 kcal/mol), from the plant Houttuynia cordata, manifested significant prohibition against RBD. Nevertheless, the standard drug, ceftriaxone, signals less inhibitory effect against MT-NTD and RBD with binding affinities of -6.3 kcal/mol and -6.5 kcal/mol, respectively. In this study, we also emphasized the pharmacological properties of the plants, which contain the screened phytocompounds. Our research could be used as a lead for future drug design to develop anti-viral drugs, as well as for preening the Siddha formulation to control the Indian delta variant B.1.617.2 and other future SARS-CoV-2 variants.

7.
Polycyclic Aromatic Compounds ; 43(3):2690-2744, 2023.
Article in English | ProQuest Central | ID: covidwho-2304288

ABSTRACT

The present study aims to provide deeper knowledge about the structural, vibrational, chemical, antimicrobial activity, molecular dynamic simulation and drug likeness of synthesized compound 4-Methoxy-N-(nitrobenzylidene)-aniline. The FT-IR and FT-Raman spectra of 4-Methoxy-N-(nitrobenzylidene)-aniline have been recorded in the powder form in the region 4000–500 cm−1 and 3500–50 cm−1. The vibrational analysis were carried out with the help of normal coordinate analysis (NCA). The molecular geometry, hydrogen bonding interaction and vibrational frequencies have been calculated using the density functional method (DFT/B3LYP) with 6-311 G (D) basis set. The natural bond orbital (NBO), atoms in molecule (AIM), and Hirshfeld surface analysis and RDG were applied to evaluate the relative strength of hydrogen bond interactions and represent their effect on the stabilities of molecular arrangements. Related molecules were compared by computation in order to understand the effect of non-bonded interactions (i.e. intermolecular and intramolecular hydrogen bonding). The HOMO and LUMO analysis was used to determine the charge transfer within the molecule. Furthermore, the in vitro antimicrobial study was carried out for the title compound against Aspergillus niger and Staphylococcus aureus. The antimicrobial activity was confirmed on the compounds with molecular docking (A.niger, S.aureus, Homosapians, Sars-Cov-19 and anticancer) studies and molecular dynamic simulation. The non-linear optical (NLO) properties were also analyzed for the molecules.

8.
European Journal of Medicinal Chemistry Reports ; 6 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2303478

ABSTRACT

Globally cancer is the second leading cause of death;a drug that can cure cancer with the utmost negligible side effects is still a distant goal. Due to increasing antibiotic resistance, microbial infection remains a grave global health security threat. The ongoing coronavirus pandemic increased the risk of microbial and fungal infection. A new series of 3-(4-methyl-2-arylthiazol-5-yl)-5-aryl-1,2,4-oxadiazole (7a-t) have been synthesized. The structure of synthesized compounds was confirmed by the spectrometric analysis. The newly synthesized compounds were screened for cytotoxic activity against breast cell lines MCF-7 and MDA-MB-231. Against the MCF-7 cell line compounds 7f, 7 g and 7n showed excellent activity with GI50 0.6 muM to <100 nM concentration. Compound 7b showed good activity against MDA-MB-231 cell line with GI50 47 muM. The active derivatives 7b, 7e, 7f, 7 g and 7n were further evaluated for cytotoxicity against the epithelial cell line derived from the human embryonic kidney (HEK 293) and were found nontoxic. The thiazolyl-1,2,4-oxadiazole derivatives were also screened to evaluate theirs in vitro antimicrobial potential against Escherichia coli (NCIM 2574), Proteus mirabilis (NCIM 2388), Bacillus subtilis (NCIM 2063), Staphylococcus albus (NCIM 2178), Candida albicans (NCIM 3100) and Aspergillus niger (ATCC 504). Amongst the 7a-t derivatives, six compounds 7a, 7d, 7f, 7n, 7o, 7r showed good antifungal activity against C. albicans and eight compounds 7c, 7d, 7 g, 7h, 7i, 7k, 7l and 7o showed good activity against A. niger. The potential cytotoxic and antifungal activity suggested that the thiazolyl-1,2,4-oxadiazole derivatives could assist in the development of lead compounds for the treatment of cancer and microbial infections.Copyright © 2022 The Authors

9.
Encyclopedia of Infection and Immunity ; 4:702-712, 2022.
Article in English | Scopus | ID: covidwho-2302779

ABSTRACT

Nonpharmacological approaches can be useful to control infectious diseases. Historically infection has been successfully managed with oxidation therapy methods that support the body's own innate defenses. Several modalities include ozone and hyperbaric oxygen therapy, ultraviolet blood irradiation (UBI), intravenous hydrogen peroxide, and ascorbate therapies. Oxidation therapies are virtually 100% safe, and repeatedly reported as highly and quickly effective in quelling infection (bacterial and viral) either as stand-alone therapies or adjunctive with drugs. They are directly and indirectly germicidal, and modulate the immune system via pro-oxidant signaling molecules. Oxidation therapies especially enhance oxygen delivery and metabolism, critical for all infection defenses. Ozone has remitted Ebola, COVID-19, and bacterial infections. UBI defeated most preantibiotic era infections in hospitals. Not being drug therapy, the effects of oxidation defenses, used by planetary animal life for millions of years, are not diminished by antibiotic-resistant organisms. Oxidation, depending on delivery method, can be very inexpensive and third world adaptable. This chapter summarizes the use of these key modalities, by exploring known published literature. © 2022 Elsevier Inc. All rights reserved.

10.
Current Traditional Medicine ; 9(6) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2302254

ABSTRACT

Herbal plant extracts or purified phytocomponents have been extensively used to treat several diseases since ancient times. The Indian Ayurvedic system and Chinese traditional medicines have documented the medicinal properties of important herbs. In Ayurveda, the polyherbal formulation is known to exhibit better therapeutic efficacy compared to a single herb. This review focuses on six key ayurvedic herbal plants namely, Tinospora cordifolia, Withania somnifera, Glycyrrhiza glabra/Licorice, Zingiber officinale, Emblica officinalis and Ocimum sanctum. These plants possess specific phytocomponents that aid them in fighting infections and keeping body healthy and stress-free. Plants were selected due to their reported antimicrobial and anti-inflammatory effects in several diseases and effectiveness in controlling viral pathogenesis. An ad-vanced literature search was carried out using Pubmed and google scholar. Result(s): These medicinal plants are known to exhibit several protective features against various diseases or infections. Here we have particularly emphasized on antioxidant, anti-inflammatory, anti-microbial and immunomodulatory properties which are common in these six plants. Recent literature analysis has revealed Ashwagandha to be protective for Covid-19 too. The formulation from such herbs can exhibit synergism and hence better effectiveness against infection and related dis-eases. The importance of these medicinal herbs becomes highly prominent as it maintains the har-monious balance by way of boosting the immunity in a human body. Further, greater mechanistic analyses are required to prove their efficacy in fighting infectious diseases like Covid-19. It opens the arena for in-depth research of identifying and isolating the active components from these herbs and evaluating their potency to inhibit viral infections as polyherbal formulations.Copyright © 2023 Bentham Science Publishers.

11.
Photodiagnosis and Photodynamic Therapy ; Conference: ABSTRACTS of the Nancy Meeting 2022. Nancy France. 41 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2296899

ABSTRACT

The Covid-19 epidemic has been the most consequential global health crisis since the era of the influenza pandemic of 1918 [1]. Due to its high spreading rate, the virus disseminated across the world in a very short time span, forcing the World Health Organization to declare Covid-19 a global pandemic after just 3 months from the first reported case in China. At the beginning of the pandemic, when no vaccines were available, people entrust their safety to very few devices such as personal protective equipment (face masks, shields, and gloves), lock-down, and social distancing. The lack of alternative and not conventional techniques to suppress the spread of airborne epidemics among humans has pushed the research to develop new antiviral devices. The SAVE-US project (Suppression of Airborne Viral Epidemic Spread by UV-Light Barriers) aims at developing and demonstrating an innovative antimicrobial device based on 222nm-radiation. As known from the literature, the UVC radiation (200-280 nm) is the most effective wavelength for the inactivation of viruses and bacteria, corresponding to the DNA and RNA absorption peaks, but may also be mutagenic. For this reason, UVC-light sterilization is commonly performed in the absence of living organisms. Radiation in the far-UVC, especially at 222 nm, has been recently investigated because it shows a good antimicrobial efficacy, tested already on both bacteria [2] and virus [3] models including coronavirus, with very limited risks to human health. The low risk is associated to the small penetration depth of 222 nm light (a few mum): the energy is absorbed by the superficial stratum corneum of the skin that contains dead cells, with negligible irradiation of the underlying live tissue [4]. We will present the first version of a new prototype of 222 nm-illuminator and some preliminary results on its characterization;the presented device will be used in successive in vitro and in vivo experiments with SARS-CoV-2 virus. The device embeds a far-UVC lamp emitting at 222 nm, optical filters, and the controlling electronics. We show results on the spatial homogeneity of the emission intensity and the dependence on the lamp-virus distance. We also report on the ozone production due to absorption of far-UVC light from molecular oxygen naturally present in the air in order to evaluate its safety for human being and to properly evaluate its photo-killing efficacy.Copyright © 2023

12.
Pharmacological Research - Modern Chinese Medicine ; 3 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2294809

ABSTRACT

Garlic (Allium sativum) has been known for its potent medicinal activities and its interesting culinary role since ancient times. With over 200 phytochemicals and flavoring compounds elucidated and many others yet to, garlic promises to improve human health and vitality. Just like other phytochemical classes, essential oils for garlic have been reported to show interesting medical activities delving across diverse antimicrobial, cardio-protective, anti-cancer, anti-Alzheimer, anti-diabetic, and immunomodulatory activities. Garlic essential oils contain mainly volatile and non-volatile allyl-sulphur-based compounds, which are a product of the stream decomposition of Allicin (a major component of garlic extract). Although a lot of work has been done on Allicin, there is little substantive work on the bio-availability and toxicities of its essential oil. This study, however, reviewed the methods that in recent times have been used to extract essential oils from garlic, recent studies on composition and therapeutic activities of Garlic essential oils, and a predictive overview of their bioavailability and toxicity. Finally, recommendations for future studies and other interesting prospects of garlic were also highlighted.Copyright © 2022

13.
Photodiagnosis and Photodynamic Therapy ; Conference: ABSTRACTS of the Nancy Meeting 2022. Nancy France. 41 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2294587

ABSTRACT

Novel safe and stable teracationic Zinc phthalocyanine is efficient against bacteria, fungi and viruses also under indoor light Recently a novel photosensitizer with outstanding properties, phthalocyanine LASU has being developed. The compound possesses unprecedented stability and antimicrobial activity. It can be activated by a weak indoor light of 270 lux and shows the activity against G+ and G- bacteria as well as fungi and viruses. Over 3 log inactivation of bacteria and fungi on the surface of a LASU-impregnated material can be achieved in 1/2-1 h of illumination with a regular indoor and/or natural light. A cotton filter impregnated with 0.1 g/m2 of LASU eradicates on its surface the coronavirus HCoV-229E by 3.5 log in 30 minutes under indoor/natural light of 500 lux. The molecule is photostable and remains active for weeks with no significant bleaching. Another remarkable property is its ability to bind to cellulose support. It readily attaches to a fiber substrate through electrostatic interactions, moreover, the size of LASU ring matches the pitch of cellulose polymer, making the conjugate unusually strong. Hence the compound does not leech to water and is stable against temperature and surfactants. The toxicology studies also reveals that substance is non-irritating for human skin, and is non-mutagenic, which makes it suitable for human-wearable items.Copyright © 2023

14.
Nanomaterials (Basel) ; 13(7)2023 Mar 27.
Article in English | MEDLINE | ID: covidwho-2300541

ABSTRACT

The COVID-19 pandemic has increased the usage of personal protective equipment (PPE) all round the world and, in turn, it has also increased the waste caused by disposable PPE. This has exerted a severe environmental impact, so in our work, we propose the utilization of a sustainable electrospun nanofiber based on poly lactic acid (PLA), as it is biobased and conditionally degradable. We optimized the weight percentage of the PLA-precursor solution and found that 19% PLA produces fine nanofibers with good morphology. We also introduced carbon nanodots (CNDs) in the nanofibers and evaluated their antibacterial efficiency. We used 1, 2, 3, and 4% CNDs with 19% PLA and found increased antibacterial activity with increased concentrations of CNDs. Additionally, we also applied a spunbond-nanofiber layered assembly for the medical face masks and found that with the addition of only 0.45 mg/cm2 on the nonwoven sheet, excellent particle filtration efficiency of 96.5% and a differential pressure of 39 Pa/cm2 were achieved, meeting the basic requirements for Type I medical face masks (ASTM-F2100).

15.
Current Traditional Medicine ; 9(5) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2266082

ABSTRACT

Background: Honey has been used medicinally in folk medicine since the dawn of civili-zation. It is a necessary component of medicine and food in a wide variety of cultures. It has been used in Unani Medicine for centuries to treat a variety of ailments. Objective(s): This review article aims to explore the medicinal characteristics of honey in view of Unani and modern concepts, highlight its potential in the treatment of the ailments stated in Unani medical literature, and also explore the relevant evidence-based phytochemistry, pharmacological, and clinical data. Method(s): The authors searched classical texts exhaustively for information on the temperament (Mizaj), pharmacological activities, mechanism of action, and therapeutic benefits of honey. Addition-ally, a comprehensive search of internet databases was conducted to compile all available information on the physicochemical, phytochemical, and pharmacological properties of this compound. Result(s): Evidence suggests that honey contains about 180 different types of various compounds, including carbohydrates, proteins, enzymes, flavonoids, and other chemical substances. In Unani classical literature, it exerts important pharmacological actions besides its immense nutritional signifi-cance. Unani physicians advocated many tested/experimented prescriptions and formulations, which still have their relevance in the amelioration of various diseases. Conclusion(s): This analysis concludes that honey has been successfully utilized in Unani medicine for centuries to treat a variety of maladies and is a potential natural source of remedy for a variety of medical disorders. Future research on honey should include a combination of Unani and modern principles.Copyright © 2023 Bentham Science Publishers.

16.
Inorganics ; 11(2):60, 2023.
Article in English | ProQuest Central | ID: covidwho-2262259

ABSTRACT

Two tetranuclear [Zn4Cl2(ClQ)6]·2DMF (1) and [Zn4Cl2(ClQ)6(H2O)2]·4DMF (2), as well as three dinuclear [Zn2(ClQ)3(HClQ)3]I3 (3), [Zn2(dClQ)2(H2O)6(SO4)] (4) and [Zn2(dBrQ)2(H2O)6(SO4)] (5), complexes (HClQ = 5-chloro-8-hydroxyquinoline, HdClQ = 5,7-dichloro-8-hydroxyquinoline and HdBrQ = 5,7-dibromo-8-hydroxyquinoline) were prepared as possible anticancer or antimicrobial agents and characterized by IR spectroscopy, elemental analysis and single crystal X-ray structure analysis. The stability of the complexes in solution was verified by NMR spectroscopy. Antiproliferative activity and selectivity of the prepared complexes were studied using in vitro MTT assay against the HeLa, A549, MCF-7, MDA-MB-231, HCT116 and Caco-2 cancer cell lines and on the Cos-7 non-cancerous cell line. The most sensitive to the tested complexes was Caco-2 cell line. Among the tested complexes, complex 3 showed the highest cytotoxicity against all cell lines. Unfortunately, all complexes showed only poor selectivity to normal cells, except for complex 5, which showed a certain level of selectivity. Antibacterial potential was observed for complex 5 only. Moreover, the DNA/BSA binding potential of complexes 1–3 was investigated by UV-vis and fluorescence spectroscopic methods.

17.
Current Traditional Medicine ; 9(4):23-36, 2023.
Article in English | EMBASE | ID: covidwho-2261644

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide. There is no effective medication for COVID-19 as of now, so it would be good to take preventive measures that not only boost our immunity but also fight against infections. The use of traditional Chinese medicine in China to treat COVID-19 patients sets the prototype demonstrating that traditional medicines can contribute to prevention and treatment successfully. In India, the Ministry of AYUSH (Ayurveda, Yoga, Unani, Siddha, Homeop-athy) released a self-care advisory during the COVID-19 crisis as a preventive aspect. This review article discusses the therapeutic potential and clinical relevance of some herbs [(Tulsi (Ocimum sanctum), Haridra (Curcuma longa), Tvaka (Cinnamon), Maricha (Piper longum), Shunthi (Zingi-ber officinale), Munakka (Dried grapes), Lavang (Syzigiumaromaticum), Pudina (Mentha arvensis), and Ajwain (Trachyspermum ammi)] advised by AUYSH to take during COVID-19 infection. They are effective in COVID-19 management, therefore, authors have discussed their detailed traditional uses as therapeutics and spotted scientific insight and clinical significance of the herbs mentioned above along with their mechanistic viewpoint, adequately, on a single platform. Provided information could be a treasure to open up a new research arena on natural products to manage human health crises effectively, caused not only by COVID-19 but also by other infectious diseases.Copyright © 2023 Bentham Science Publishers.

18.
Cellular Microbiology ; 2022 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2250380

ABSTRACT

Without adaptive immunity, invertebrates have evolved innate immune systems that react to antigens on the surfaces of pathogens. These defense mechanisms are included in horseshoe crab hemocytes' cellular responses to pathogens. Secretory granules, large (L) and small (S), are found on hemocytes. Once the invasion of pathogens is present, these granules release their contents through exocytosis. Recent data in biochemistry and immunology on the granular constituents of granule-specific proteins are stored in large and small granules which are involved in the cell-mediated immune response. L-granules contain most clotting proteins, which are necessary for hemolymph coagulation. They also include tachylectins;protease inhibitors, such as cystatin and serpins;and anti-lipopolysaccharide (LPS) factors, which bind to LPS and agglutinate bacteria. Big defensin, tachycitin, tachystatin, and tachyplesins are some of the essential cysteine-rich proteins in S-granules. These granules also contain tachycitin and tachystatins, which can agglutinate bacteria. These proteins in granules and hemolymph act synergistically to fight infections. These biomolecules are antimicrobial and antibacterial, enabling them to be drug resistant. This review is aimed at explaining the biomolecules identified in the horseshoe crab's hemolymph and their application scopes in the pharmaceutical and biotechnology sectors.Copyright © 2022 Md. Ashrafuzzaman et al.

19.
Application of Natural Products in SARS-CoV-2 ; : 293-311, 2022.
Article in English | Scopus | ID: covidwho-2250009

ABSTRACT

COVID-19 is a human coronavirus infectious disease that is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spreading rapidly across the globe with no treatment currently. Thus, finding the potential therapeutic treatment for this disease is necessary. SARS-CoV-2 main protease (Mpro) is an essential enzyme for viral replication. Different compounds that inhibit SARS-CoV-2 Mpro can be considered effective against the disease. Pyridones were recognized as potential key pharmacophores that inhibit SARS-CoV-2 Mpro. The pyridone system is present in many natural products, vital drugs, and synthetic bioactive compounds. Pyridones have several biological properties, i.e., antimicrobial, anti-inflammatory, antioxidant, antiviral, antitumor, antituberculosis, and antihuman immunodeficiency virus (anti-HIV) activity. The genome of coronavirus encodes Spike and Membrane protein that contribute to the attachment of the virus to the host for viral replication. Pyridones inhibit S protein and M protease of SARS-COV-2. Further investigation is required to evaluate the relationship between pyridones and SARS-CoV-2. © 2023 Elsevier Inc. All rights reserved.

20.
Coronaviruses ; 3(1):18-24, 2022.
Article in English | EMBASE | ID: covidwho-2281323

ABSTRACT

Covid 19 is a pandemic disease spread almost in the whole world. To date, no medical advancement to curb the virus. Coronavirus is an enveloped virus transmitted from the biological and non-biological surface by direct or indirect contact. Limited literature revealed that the enveloped virus can be killed by disinfectants. There are many biocidal agents used for decontamination of the virus, yet they have many issues like toxicity, killing time, activation requirement, etc. Some are specific to the inanimate surface but not used by a human being. This current situation showed an urgent need for a biocidal agent which can act on biological as well as non-biological surfaces without any potential toxicity. Moreover, it should be easy to handle, inexpensive, and safe for the environment. Hypochlorous acid is a weak acid that acts as a powerful disinfectant and shows biocidal efficacy against a wide range of microorganisms. Hypochlorous acid is simple to use, inexpensive, eco-friendly, non-toxic, and stable. The properties of HOCl can be regulated at the site of preparation and therefore, its compliance is high. Hypochlorous acid seems to be a promising agent in disinfection and sterilization in healthcare facilities. Due to its diverse biocidal actions, it may be used as a potent disinfectant against novel coronavirus.Copyright © 2022 Bentham Science Publishers.

SELECTION OF CITATIONS
SEARCH DETAIL